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Abstract   An atlas is generally defined as a bound collection of tables, charts or 

illustrations describing a phenomenon. In an anatomical atlas for example, a col-

lection of representative illustrations and text describes anatomy for the purpose of 

communicating anatomical knowledge. The atlas serves as reference frame for 

comparing and integrating data from different sources by spatially or semantically 

relating collections of drawings, imaging data, and/or text. In the field of medical 

image processing, atlas information is often constructed from a collection of re-

gions of interest, which are based on medical images that are annotated by domain 

experts. Such an atlas may be employed for example for automatic segmentation 

of medical imaging data. The combination of interactive visualization techniques 

with atlas information opens up new possibilities for content creation, curation, 

and navigation in virtual atlases. With interactive visualization of atlas infor-

mation, students are able to inspect and explore anatomical atlases in ways that 

were not possible with the traditional method of presenting anatomical atlases in 

book format, such as viewing the illustrations from other viewpoints. With ad-

vanced interaction techniques, it becomes possible to query the data that forms the 

basis for the atlas, thus empowering researchers to access a wealth of information 

in new ways. So far, atlas-based visualization has been employed for mainly med-

ical education, as well as biological research. In this survey, we provide an over-

view of current digital biomedical atlas tasks and applications and summarize rel-

evant visualization techniques. We discuss recent approaches for providing next-

generation visual interfaces to navigate atlas data that go beyond common text-

based search and hierarchical lists. Finally, we reflect on open challenges and op-

portunities for the next steps in interactive atlas visualization. Keywords: biomed-

ical visualization, virtual atlases, interactive visualization, atlases, visualization 
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1 Introduction 

Since the 16th century, the word ’atlas’ has been used to describe a collection of 

geographical maps. In the medical context, an atlas of human anatomy refers to a 

collection of illustration and descriptive text that captures knowledge on the mor-

phological structure of the human body. An example of such an atlas is Netter’s 

Atlas of Human Anatomy (Netter, 2017), which depicts the human body in hand-

painted illustrations, annotated radiological images, and quick look-up tables. The 

main aim of such an atlas is to improve the understanding of anatomy and how it 

applies to medicine. Anatomical atlases are an important reference in both medical 

education as well as in clinical practice, providing information on shape, position, 

and structural relations. 

With the advent of increased computing power, it became feasible to construct 

virtual atlases. These virtual atlases can be used in the traditional sense, as a digital 

collection of texts and illustrations, but also enable more advanced representations 

of human anatomy, for instance by constructing virtual three-dimensional refer-

ence models of standard anatomy. Such models allow for additional interaction 

techniques, such as rotation, zooming, and showing and hiding structures, which 

were not possible with traditional illustrations. The digital nature of such atlases 

offers several advantages over the traditional printed atlases. First, this opens up 

for additional content creation methods, above the limitations of printed materials, 

such as 3D reconstruction. Second, virtual atlases allow for novel methods of con-

tent curation, where additions to the atlas can be made continuously. Finally, vir-

tual atlas information can be combined with complex (visual) querying techniques, 

empowering researchers to access a wealth of information via simple interactions. 

These advantages have given rise to the creation of a multitude of diverse virtu-

al atlases in the biomedical domain, for example the Allen Brain Atlas (Jones et 

al., 2009), the DigiMouse atlas (Dogdas et al., 2007), and an atlas of the adult hu-

man brain transcriptome (Hawrylycz et al., 2012). For an overview of atlases in 

developmental biology, please refer to the survey of online atlases and gene ex-

pression resources for model organisms by Clarkson (2016). Given the wealth of 

virtual atlases now available, there is an opportunity to employ advanced visuali-

zation and interaction techniques that go beyond traditional atlas-use as a static 

reference collection. 

In this work, we present a characterization of tasks and applications within the 

context of virtual biomedical atlases. Subsequently, we provide an overview of 

advanced visualization techniques that are applicable to atlas visualization, fol-

lowed by a description of potential interaction and navigation strategies. We brief-

ly describe relevant technology which enables interactive atlas visualization and 

conclude with an outlook on open challenges and opportunities. Our aim with this 

work is twofold; we seek to raise awareness among atlas curators of advanced data 

analysis and visualization techniques, and we hope to highlight open research 

questions and challenges in atlas visualization for visualization researchers. 
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2  Biomedical Atlas Tasks and Applications 

There is a wide variety of tasks and application areas that virtual atlases may sup-

port. A well-known application originating from the traditional use of the anatom-

ical atlas, is to use a virtual atlas for educational purposes. Preim and Saalfeld 

(2018) presented a comprehensive survey on virtual human anatomy education 

systems. While the authors do not explicitly focus on virtual atlases in this survey, 

they do mention that most of the virtual anatomy systems were described as a digi-

tal atlas. The authors characterize the sources of spatial information that may be 

collected in such an educational digital atlas as (commercial) 3D models, radiolog-

ical imaging data, cadaver data, and segmentations. The Virtual Surgical Pelvis for 

example consists of cadaver data, segmentations, 3D models, and knowledge from 

histological analysis, and was so far mainly employed as an educational resource 

(Smit et al., 2016). There are also commercial platforms available aimed at anato-

my education via a web-interface. Examples are the Biodigital Human (Qualter et 

al., 2012) and ZygoteBody (Kelc, 2012). Typically the 3D models are developed 

in house and as such protected intellectual property, but Zygote also sells their as-

sets. 

In addition to education, a virtual atlas may also support data analysis and im-

age processing. An example of this is to use an atlas dataset for image segmenta-

tion, for instance in segmentation of MR brain scans (Cabezas et al., 2011). 

Through registration of the atlas to an unseen dataset, the unseen dataset can be 

segmented based on the mapped atlas information. This approach can also be mod-

ified to to work with multiple atlases (Aljabar et al., 2009). When registering an 

atlas to patient-specific imaging data, it may be used to construct patient-specific 

models for treatment planning purposes (Smit et al., 2017) (see Figure 1).  

 

 

Fig. 1 The Virtual Surgical Pelvis atlas is mapped to a patient-specific MRI scan (left), allowing 
for the creation of patient-specific models (right) (Smit et al., 2017). 

Generally, the atlas is used to transfer knowledge to an unseen dataset, howev-

er, the reverse is also possible. By registering additional datasets to a virtual atlas, 

an atlas may be further enriched with additional information. For example, by reg-

istering patient-specific information to the atlas, pathology such as a tumor can be 

visualized with the atlas as an anatomical reference (Kikinis et al., 1996). The atlas 
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space may also be used as a common frame of reference, for instance to bring gene 

activity imaging data together in an idealized expert-defined atlas (Walter et al., 

2010). 

Virtual atlas information can also be employed for simulation and prediction. 

An atlas dataset can form a basis for biomechanical simulations, for instance to 

compensate brain shift (Dumpuri et al., 2007). 

Furthermore, virtual atlases may be used for consolidation and summarization 

of research data. The adult human brain transcriptome atlas (Hawrylycz et al., 

2012) is an example of such an atlas that caters to researchers as a baseline for 

studies of (ab)normal human brain function. The Allen Human Brain Atlas (Shen 

et al., 2012) similarly aims to boost brain research by bringing together structure, 

function, and gene expression data. 

In addition to these diverse tasks that virtual atlases may support, there is a 

wide range of types of application domains that are supported. On the medical 

side, a virtual atlas may describe anatomy, physiology, pathology, variation, de-

velopment, or a mixture of multiple aspects. In the biological domain, digital at-

lases also vary from describing gene expression, neural circuitry, cell types, to de-

velopment. 

3 Visualization Techniques 

When virtual atlas data features a spatial aspect, there are many standard and ad-

vanced visualization techniques that can be employed to visualize this data effi-

ciently. In the survey by Clarkson (2016), an overview of common design patterns 

for graphic representation of anatomy is presented. 

 

Fig. 2 A 2D slice-based visualization of the Virtual Surgical Pelvis atlas visualized in the brows-
er showing cryosection and segmentation information (Smit et al., 2016). The axial (red outline), 
coronal (green outline), and sagittal (blue outline) plane are visible. Slices can be selected by 
moving the crosshair in one of the views, which updates the other views to the slices indicated by 
color-coordinated lines. 



5 

3.1 Standard Visualization Techniques 

There are two standard visualization techniques that are currently regularly em-

ployed for virtual atlas-data: 2D slice-based visualization and 3D surface visuali-

zation. 

In 2D slice-based visualization, a 3D volume is sectioned in the axial, coronal, 

or sagittal plane, and presented as a collection of 2D images. A single slicing di-

rection may be presented, or a combination of all three orthogonal views can be 

employed. An example of the latter is visible in Figure 2. Here, to navigate 

through the stack of slices, users can drag a crosshair around to control the two 

other views indicated by the colored lines. The Allen Brain Reference Atlases, 

such as the Human Brain Atlas (Hawrylycz et al., 2012), also offer a slice-based 

view, but they offer a single anatomical plane and visualize the slices next to each 

other in juxtaposition. A slider is then used to navigate to slices of interest. It is al-

so possible to pick arbitrary slicing directions, a feature which is available for in-

stance in the eMouseAtlas (Armit et al., 2012). This makes complicates the inter-

action by adding three degrees of freedom (pitch, yaw, roll) to select an 

appropriate slicing plane, but can be essential if the subject of interest is not 

aligned with the standard orthogonal planes. 

When the atlas features 3D models, they can be shown in a surface visualiza-

tion. In Figure 3, we see the Virtual Surgical Pelvis atlas in a 3D surface visualiza-

tion. Here, the surfaces feature textures which employ colors that are either repre-

sentative for tissue color, or standard in anatomy communication. Such an 

anatomical standard is to use red for arteries, blue for veins, and yellow for nerves. 

The textures themselves are meant to communicate the type of tissue that is visual-

ized, for instance with a veined appearance for the organs, and a striped appear-

ance for the musculature. The Allen Mouse Brain Connectivity Atlas (Oh et al., 

2014) is also visualized in a surface visualization in the browser: the Allen Brain 

Explorer. However, here the structures are not textured, and the colors are varying 

in hue in such a way that structure classes are visually separable, and groups of 

similar structures can easily be identified. 

Many of the more comprehensive virtual atlases feature an aggregation of mul-

tiple datasets. In such cases, a summarization visualization can be used to provide 

an overview of the fused information. For instance, a representative average of the 

atlas 

Fig. 3 A 3D surface visualization 
of the Virtual Surgical Pelvis at-
las visualized in the browser 
(Smit et al., 2016). The slice 
planes from Figure 2 are also 
visible in the 3D surface view 
for reference.  
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dataset can be presented for navigation purposes, as is visible in the AFQ-Browser 

tool (Yeatman et al., 2018). Here, a general 3D models of major fiber tracts are 

presented to the user for selection of bundles of interest. 

3.2 Advanced Visualization Techniques 

In addition to standard visualization techniques, more recent visualization research 

presents novel techniques that have good potential for interactive atlas visualiza-

tion yet are currently under-explored. 

The cumbersome task of creating 3D models may be avoided by direct visuali-

zation of volumetric data using a volume rendering approach. Direct volume ren-

dering (Levoy, 1988) is currently not employed very often in atlas visualization 

but can be a highly effective way of visualizing volumetric data without the need 

for generating explicit surface models. One advantage of directly visualizing the 

volumetric data is that the full three-dimensional information can be represented. 

While previously considered to be prohibitively expensive, advances in the per-

formance of Graphics Processing Units (GPUs) have lead to the availability of ad-

vanced volume rendering techniques even on low-end systems. For instance, a di-

rect volume rendering approach is used in the BrainGazer project (Bruckner et al., 

2009) to render volumetric confocal microscopy data. As discussed in the compre-

hensive survey by Jönsson et al. (Jönsson et al., 2014), in recent years a number of 

interactive volume rendering methods that can even incorporate global illumina-

tion effects such as ambient occlusion (Hernell et al., 2010), multiple scattering 

(Kniss et al., 2003), or refraction (Magnus and Bruckner, 2018), have been pre-

sented. While such methods can be utilized to generate visually appealing results, 

they may not necessarily be ideally suited for the purpose of visualizing atlas data. 

In illustrative visualization, on the other hand, rendering techniques are in-

spired by scientific illustrations. Here, the focus is not on rendering structures as 

realistically as possible, but rather on adapting the visual representation in such a 

way that essential information is emphasized. This reduces visual clutter, which 

can become an issue in comprehensive virtual atlases that feature a multitude of 

structures. The challenge of reproducing the clarity and aesthetic quality of tradi-

tional illustrations such as those found in medical textbooks has been one of the 

main drivers in illustrative visualization, and several sophisticated techniques for 

the visualization of surface and volume data have been developed (see Figure 4). 

One way to classify these methods is according to the level of abstraction that in-

dividual approaches operate on. 

Low-level abstraction techniques tend to focus on the appearance of structures 

and include approaches that aim to reproduce particular artistic styles.  
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Fig. 4 Examples for illustrative 
visualization techniques for dif-
ferent types of volumetric data 
available in the VolumeShop 
framework (Bruckner and 
Gröller, 2005). 

Lawonn et al. (2018) present a comprehensive survey on illustrative visualization 
for 3D surface models, in which they categorize techniques into silhouettes and 
contours, feature lines, hatching, stippling, and shading. Likewise, for volumetric 
data several powerful methods for mimicking various rendering styles including 
stippling (Lu et al., 2002), line drawing (Burns et al., 2005), and many other artis-
tic techniques, have been developed. Style transfer functions (Bruckner and 
Gröller, 2007), for instance, enable the specification of object appearance based on 
the image of a sphere shaded in the desired manner. High-level abstraction tech-
niques, on the other hand, are concerned with what is visible and recognizable in 
the scene. This class of methods, also referred to as smart visibility (Viola and 
Gröller, 2005), aims to reveal otherwise hidden or poorly visible objects by selec-
tively displacing or altering the visual prominence of occluding structures. Exam-
ples include approaches such as cutaways and ghosting (Feiner and Seligmann, 
1992; Bruckner et al., 2006; Diepstraten et al., 2003), where an occluding object is 
removed or its opacity is reduced, or exploded views (Bruckner and Gröller, 2006; 
Li et al., 2008). Viola and Isenberg (2018) further expand on the idea of abstrac-
tion in illustrative visualization. 

A concept closely related to abstraction is the notion of focus+context, where 
both low-level and high-level abstraction techniques are employed in order to em-
phasize particular structures (e.g., the results of a current selection or query) while 
still presenting them in relation to their surroundings. Focus+context approaches 
typically employ the concept of an importance function (Viola et al., 2005) to 
characterize the relevance of an object or region. Such importance functions have 
been, for instance, used to steer interactive cutaways (Krüger et al., 2006), close-
ups (Taerum et al., 2006), peel-aways (Correa et al., 2006), or lenses (Tominski et 
al., 2017). For biomedical data, the importance function is typically defined based 
on a geometric region in the data or by a segmentation mask. More advanced ideas 
aim to provide fine-grained control over the mapping of data attributes to visual 
styles. Rautek et al. (2007), for instance, presented a system based on fuzzy-logic, 
which allows users to formulate rules for data and illustration semantics, while 
Svakhine et al. (2005) proposed the use of multi-level motifs that encapsulate do-
main knowledge of illustration styles. While such approaches could potentially 
enable a more tailored experience, the difficulty of specifying and maintaining ap-
propriate rule bases has to date prevented the widespread adoption of these meth-
ods. 
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In the context of atlas visualization, illustrative abstraction may be a suitable 

approach to visualize information at different scales. In an exploratory user study, 

Kuß et al. (2010) evaluated the use of different illustrative enhancements for the 

visualization of filament-surface relationships in 3D brain models. They conclude 

that the best results are achieved using a combination of line coloring and intersec-

tion glyph display. Swoboda et al. (2017) make heavy use of abstraction in the in-

formation and interaction design of their neuronal atlas interface. In collaboration 

with artists, they propose a highly reduced spatial visualization in order to avoid 

visual clutter. Additional information is presented in the form of glyphs which also 

convey quantitative information and are used as a central interaction element to 

provide details on demand. 

In uncertainty visualization, uncertainty in the data coming from a variety of 

sources is visually communicated in order to give a faithful representation of the 

underlying data. Potter et al. (2012) present a taxonomy of uncertainty visualiza-

tion approaches. In the context of atlas visualization, uncertainty visualization 

techniques may be employed to visually encode variability, for instance when vis-

ualizing a statistical atlas of bone anatomy (Chintalapani et al., 2007). While ap-

proaches such as average volumes are frequently used to characterize variation, 

more advanced techniques may be beneficial. Raj et al. (2016), for example, eval-

uated the use of 3D contour boxplots in the construction and analysis of anatomi-

cal atlases and showed that they provide superior information about shape variabil-

ity. 

Comparative visualization deals with the challenge of making visual compari-

sons of data. Approaches for comparative visualization in general are categorized 

into juxtaposition, superposition and explicit encodings (Gleicher et al., 2011). In 

juxtaposition, visualizations are placed side by side, while in superposition visual-

izations are placed on top of each other. In explicit encoding, the difference be-

tween the datasets are explicitly visualized. With respect to atlas visualization, a 

comparison between multiple selections of atlas data is often desirable. In the 

AFQ-Browser tool (Yeatman et al., 2018) for example, comparisons of cohort se-

lections are made by a combination of juxtaposition for multiple fiber tract selec-

tions, and superposition to display individual cohort members. Kim et al. (2017) 

provide an extensive survey of comparative visualization techniques for spatial da-

ta. 
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4 Interaction and Navigation Strategies 

To access the wealth of information virtual atlases offer, good interaction and nav-

igation strategies are essential. Clarkson (2016) offers a comprehensive overview 

of textual and graphical design patterns for querying gene expression databases. 

Hierarchical navigation techniques are often employed to browse atlas infor-

mation. Typically, this is presented in a nested list, where groups of structures or 

individual structures can be selected and deselected. Examples of such hierarchical 

navigation tools are visible in both the Online Anatomical Human web application 

(Smit et al., 2016) and the The Allen Mouse Brain Connectivity Atlas (Oh et al., 

2014) visualized in the Allen Brain Explorer. Selections via hierarchical menus 

can be used to make structures visible or invisible, or to retrieve more detailed in-

formation on the selection. A benefit of using a hierarchical list is that groups may 

be collapsed or unfolded such that the user can pick an appropriate level of detail 

for his/her investigation. In cases where there is no underlying hierarchy in the 

items or there is only a limited number of items, a list may be offered instead as a 

compact representation. 

In addition to querying via hierarchical or list menus, text-based search can be a 

powerful addition for information retrieval. This is especially useful when com-

bined with auto-completion to suggest search terms that may be relevant based on 

the textual input so far. A combination of a hierarchical menu and text-based 

search can be especially powerful when the amount of structures and groups of 

structures are very large. 

Rather than searching explicitly for specific information, similarity search can 

be used to find information that is either semantically or spatially close to selected 

information. This can be an additional strategy to navigate large amounts of data, 

as well as to navigate to additional resources linked from the atlas. Appropriate 

similarity criteria need to be decided upon when offering such a search feature. An 

example of such a criterion could be spatial proximity. 

Besides the more traditional textual search and navigation strategies, visual 

queries can be an intuitive way to search directly from within a visualization. An 

straight-forward example of this is querying a structure by clicking on it in a 

graphical representation. Smit et al. (2012) also allow atlas querying via a selec-

tion sphere. A 3D sphere can be placed in the surface visualization, and all infor-

mation present inside the sphere, for instance anatomical landmarks and related 

literature, will be retrieved. In addition to providing traditional search and brows-

ing facilities, BrainGazer (Bruckner et al., 2009) allows for several types of inter-

active visual queries based on distance and structural information, and subsequent 

work extended this approach to support more advanced shape-based object re-

trieval (Trapp et al., 2013). 
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5 Technology 

To enable storage and querying of virtual atlas information, the technology stack 

must be chosen to adequately handle the specific requirements an atlas may have. 

There is a plethora of database technologies available, and the best fit depends on 

the atlas specifics. When at the start of the data acquisition the type and character-

istics of the data are already known, a traditional relational database may be a 

good fit. If, however, it is not yet possible to state the exact format of the data that 

will be a part of the atlas in advance, a so-called schema-less database may be em-

ployed, which is considered a promising for clinical data storage (Lee et al., 2013). 

Another technology decision must made with respect to designing the atlas in-

terface as a desktop application, for the Web, or as a combination of the two. 

While traditionally desktop applications were needed to utilize the advanced 

graphics processing power, currently many web-technologies have become availa-

ble that allow for interactive visualization in the browser. Examples of this are the 

WebGL standard, which now allows for volume rendering in the browser (Con-

gote et al., 2011), and the Three.js framework (Danchilla,2012). Yeatman et al. 

(2018), the authors of the AFQBrowser tool, argue that browser-based tools will 

be increasingly employed for highdimensional data exploration, scientific com-

munication, data aggregation across labs, and data publication. Commercial tools 

such as the Biodigital Human (Qualter et al., 2012) platform currently also allow 

content API access as well as a mobile SDK to support mobile- and web-

developers. 

6 Open Challenges and Opportunities 

There are still many open challenges and opportunities for interactive atlas visuali-

zation. These challenges and opportunities lie both on the side of atlas creators, as 

well on the side of visualization researchers. For atlas creators, it may be worth-

while to employ more advanced data analysis and visualization techniques, while 

for visualization researchers, there are open research challenges that atlases pre-

sent which require the development of new methods. 

As the volume, variety, and complexity of data to be represented in atlases con-

stantly increases, novel solutions for efficient and effective exploration are needed. 

Visual analytics defined as "the science of analytical reasoning facilitated by visu-

al interactive interfaces" (Thomas and Cook, 2006) has grown out of the fields of 

information visualization and scientific visualization in computer science with a 

specific focus on enabling the analysis of large amounts of heterogeneous data, in-

tegrating techniques from visualization, interaction, and automatic data analysis. It 
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is characterized by a strong emphasis on enabling the formulation and validation 

of hypotheses, facilitated by a combination of human knowledge and intellect with 

automated techniques. Interactive visualization acts as a high-throughput channel 

used to make this human-machine interface as efficient as possible. Partly due to 

its origins in U.S. national security, visual analytics research has mostly focused 

on abstract data (Cammarano et al., 2007), i.e., points located in a high-

dimensional space without any particular a-priori preferences among the dimen-

sions. 

The aim of interactive visual analysis is to provide users with insight into the 

meaning of the data. Using multiple, interactively linked views of the same data 

set allows the user to productively combine different aspects of the available in-

formation. The visual information-seeking-mantra – overview first, filter, zoom in, 

details on demand – as defined by Shneiderman (1996), is frequently used as a 

guiding principle. Weaver (2004) showed that the use of multiple linked views can 

assist the analysis of complex phenomena but requires careful coordination. The 

concept of linking and brushing allows the user to select an area or parameter 

range of interest by interactively placing selections on a rendering. Other views 

and interactions are linked to the selections and focus on information related to the 

selected subset. Hauser (2006) states that as soon as a notion of interest in some 

subset of the data is established, we can visualize the selection in full detail while 

reducing the amount of visual information about the remaining data. One example 

for the power of visual analytics in the context of medical data visualization is the 

work of Termeer et al. (2007), who present an interactive system for the investiga-

tion of cardiac models augmented with patient-specific late enhancement MRI da-

ta. In the context of atlas data, we believe that similar interactive analysis mecha-

nisms could greatly expand the power and flexibility of existing interfaces. As 

atlas data is becoming richer and more heterogeneous, the analysis and visualiza-

tion of such data also becomes more challenging. In future interactive atlas visual-

ization platforms, it could therefore be worthwhile to provide data science facili-

ties and tools directly integrated into an interactive visual analysis interface, such 

that these large and heterogeneous datasets can be analyzed and visualized more 

effectively. Examples of such techniques are clustering (Xu and Wunsch, 2005) 

and dimensionality reduction (Van Der Maaten et al., 2009). Providing data sci-

ence tools could provide more insight into the complex data sets that an atlas may 

constitute and may lift the purpose of an atlas from use as a descriptive resource to 

use as a research tool. 

Furthermore, as the curation of atlas data takes place at multiple scales, all the 

way from the organism level to detailed DNA acquisitions, and in multiple do-

mains, interlinking across these scales and domains would be an interesting ave-

nue for visualization research, extending upon the notion of seamless transitions 

between visual representations (Miao et al., 2018). 

Many of the current atlas interfaces are set up in such a way that there is a gen-

eral 3D model visible, and additional information can be retrieved via hierarchical 

menus. Interactive visualization of variation and distributions within data collec-
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tions is currently under-explored. While the AFQ-Browser (Yeatman et al., 2018), 

features tractography information from a cohort, the mean and variation are not 

explicitly visualized. The uncertainty visualization techniques described in Section 

3.2 could play a crucial role here to showcase variability and distribution. 

In recent years, more and more emphasis has been placed on the advantages of 

open science. By having platforms and data openly available, there is an increase 

in transparency and reproducibility, which facilitates a more efficient scientific 

process (Molloy, 2011). In this light, many of the atlases are also freely available, 

as for instance the atlases of the Allen institute are. To further strengthen such ini-

tiatives, providing standardization of atlas formats would allow easier integration 

and exchange of information between different initiatives worldwide. 

With the movement towards open access of publicly funded research data, there 

are now a multitude of publicly available datasets. These data collections are often 

stored in larger repositories dedicated to a specific theme, such as for example the 

Cancer Imaging Archive (Clark et al., 2013). It would further enrich atlases if they 

could integrate stronger links to these general data repositories and specifically to 

closely related datasets within such repositories. 

7 Conclusion 

We have presented an overview of digital biomedical atlas tasks and applications 

along with relevant visualization and interaction techniques for interactive atlas 

visualization. There are still many challenges and research opportunities for both 

atlas developers and visualization researchers alike. We hope that this chapter can 

form a solid foundation and reference for both of these target audiences to further 

advance the field towards advanced interactive visualization for virtual atlases. 

Acknowledgments   This work is partially supported by the Bergen Research Foundation (BFS) 

under grant ID BFS2016TMT01. 

 



13 

References 

Aljabar P, Heckemann RA, Hammers A, Hajnal JV, Rueckert D (2009) Multi-atlas based seg-

mentation of brain images: atlas selection and its effect on accuracy. Neuroimage 46(3):726–

738, DOI 10.1016/j.neuroimage.2009.02.018 

Armit C, Venkataraman S, Richardson L, Stevenson P, Moss J, Graham L, Ross A, Yang Y, 

Burton N, Rao J, et al. (2012) eMouseAtlas, EMAGE, and the spatial dimension of the tran-

scriptome. Mammalian genome 23(9-10):514–524, DOI 10.1007/s00335-012-9407-1 

Bruckner S, Gröller ME (2005) VolumeShop: An interactive system for direct volume illustra-

tion. In: Proceedings of IEEE Visualization, pp 671–678, DOI 

10.1109/VISUAL.2005.1532856 

Bruckner S, Gröller ME (2006) Exploded views for volume data. IEEE Transactions on Visuali-

zation and Computer Graphics 12(5):1077–1084, DOI 10.1109/TVCG.2006.140 

Bruckner S, Gröller ME (2007) Style transfer functions for illustrative volume rendering. Com-

puter Graphics Forum 26(3):715–724, DOI 10.1111/j.14678659.2007.01095.x 

Bruckner S, Grimm S, Kanitsar A, Gröller ME (2006) Illustrative context-preserving exploration 

of volume data. IEEE Transactions on Visualization and Computer Graphics 12(6):1559–

1569, DOI 10.1109/TVCG.2006.96 

Bruckner S, Soltészová V, Groller E, Hladuvka J, Buhler K, Jai YY, Dickson BJ (2009) 

Braingazer - visual queries for neurobiology research. IEEE Transactions on Visualization 

and Computer Graphics 15(6):1497–1504, DOI 10.1109/TVCG.2009.121 

Burns M, Klawe J, Rusinkiewicz S, Finkelstein A, DeCarlo D (2005) Line drawings from vol-

ume data. ACM Transactions on Graphics 24(3):512–518, DOI 10.1145/1073204.1073222 

Cabezas M, Oliver A, Lladó X, Freixenet J, Cuadra MB (2011) A review of atlasbased segmen-

tation for magnetic resonance brain images. Computer methods and programs in biomedicine 

104(3):e158–e177, DOI 10.1016/j.cmpb.2011.07.015 

Cammarano M, Dong X, Chan B, Klingner J, Talbot J, Halevey A, Hanrahan P (2007) Vis-

ualization of heterogeneous data. IEEE Transactions on Visualization and Computer 

Graphics 13(6):1200–1207, DOI 10.1109/TVCG.2007.70617 

Chintalapani G, Ellingsen LM, Sadowsky O, Prince JL, Taylor RH (2007) Statistical atlases 

of bone anatomy: construction, iterative improvement and validation. In: International 

Conference on Medical Image Computing and Computer-Assisted Intervention, Spring-

er, pp 499–506, DOI 10.1007/978-3-540-75757-3_61 

Clark K, Vendt B, Smith K, Freymann J, Kirby J, Koppel P, Moore S, Phillips S, Maffitt D, 

Pringle M, et al. (2013) The Cancer Imaging Archive (TCIA): maintaining and operat-

ing a public information repository. Journal of digital imaging 26(6):1045–1057, DOI 

10.1007/s10278-013-9622-7" 

Clarkson MD (2016) Representation of anatomy in online atlases and databases: a survey 

and collection of patterns for interface design. BMC Developmental Biology 16(1):18, 

DOI 10.1186/s12861-016-0116-y 

Congote J, Segura A, Kabongo L, Moreno A, Posada J, Ruiz O (2011) Interactive visuali-

zation of volumetric data with WebGL in real-time. In: Proceedings of the 16th Interna-

tional Conference on 3D Web Technology, ACM, pp 137–146, DOI 

10.1145/2010425.2010449 

Correa C, Silver D, Chen M (2006) Feature aligned volume manipulation for illustration 

and visualization. IEEE Transactions on Visualization and Computer Graphics 

12(5):1069–1076, DOI 10.1109/TVCG.2006.144 

Danchilla B (2012) Three.js framework. In: Beginning WebGL for HTML5, Springer, pp 

173–203, DOI 10.1007/978-1-4302-3997-0_7 

Diepstraten J, Weiskopf D, Ertl T (2003) Interactive cutaway illustrations. Computer 

Graphics Forum 22(3):523–532, DOI 10.1111/1467-8659.t01-3-00700 



14  

Dogdas B, Stout D, Chatziioannou AF, Leahy RM (2007) Digimouse: a 3D whole body 

mouse atlas from CT and cryosection data. Physics in Medicine & Biology 52(3):577, 

DOI 10.1088/0031-9155/52/3/003 

Dumpuri P, Thompson RC, Dawant BM, Cao A, Miga MI (2007) An atlas-based method to 

compensate for brain shift: Preliminary results. Medical Image Analysis 11(2):128–145, 

DOI 10.1016/j.media.2006.11.002 

Feiner SK, Seligmann DD (1992) Cutaways and ghosting: satisfying visibility constraints 

in dynamic 3D illustrations. The Visual Computer 8(5):292–302, DOI 

10.1007/BF01897116 

Gleicher M, Albers D, Walker R, Jusufi I, Hansen CD, Roberts JC (2011) Visual compari-

son for information visualization. Information Visualization 10(4):289– 309, DOI 

10.1177/1473871611416549 

Hauser H (2006) Generalizing Focus+Context Visualization, Springer, pp 305–327. DOI 

10.1007/3-540-30790-7_18 

Hawrylycz MJ, Lein ES, Guillozet-Bongaarts AL, Shen EH, Ng L, Miller JA, Van De 

Lagemaat LN, Smith KA, Ebbert A, Riley ZL, et al. (2012) An anatomically compre-

hensive atlas of the adult human brain transcriptome. Nature 489(7416):391, DOI 

10.1038/nature11405 

Hernell F, Ljung P, Ynnerman A (2010) Local ambient occlusion in direct volume render-

ing. IEEE Transactions on Visualization and Computer Graphics 16(4):548–559, DOI 

10.1109/TVCG.2009.45 

Jones AR, Overly CC, Sunkin SM (2009) The Allen brain atlas: 5 years and beyond. Nature 

Reviews Neuroscience 10(11):821, DOI 10.1038/nrn2722 

Jönsson D, Sundén E, Ynnerman A, Ropinski T (2014) A survey of volumetric illumination 

techniques for interactive volume rendering. Computer Graphics Forum 33(1):27–51, 

DOI 10.1111/cgf.12252 

Kelc R (2012) Zygote Body: A new interactive 3-dimensional didactical tool for teaching 

anatomy. WebmedCentral ANATOMY 2012;3(1):WMC002903 DOI 

10.9754/journal.wmc.2012.002889 
Kikinis R, Shenton ME, Iosifescu DV, McCarley RW, Saiviroonporn P, Hokama HH, 

Robatino A, Metcalf D, Wible CG, Portas CM, et al. (1996) A digital brain atlas for sur-

gical planning, model-driven segmentation, and teaching. IEEE Transactions on Visual-

ization and Computer Graphics 2(3):232–241, DOI 10.1109/2945.537306 

Kim K, Carlis JV, Keefe DF (2017) Comparison techniques utilized in spatial 3D and 4D 

data visualizations: A survey and future directions. Computers & Graphics 67:138–147, 

DOI 10.1016/j.cag.2017.05.005 

Kniss J, Premoze S, Hansen C, Shirley P, McPherson A (2003) A model for volume light-

ing and modeling. IEEE Transactions on Visualization and Computer Graphics 

9(2):150–162, DOI 10.1109/TVCG.2003.1196003 

Krüger J, Schneider J, Westermann R (2006) Clearview: An interactive context preserving 

hotspot visualization technique. IEEE Transactions on Visualization and Computer 

Graphics 12(5):941–948, DOI 10.1109/TVCG.2006.124 

Kuß A, Gensel M, Meyer B, Dercksen VJ, Prohaska S (2010) Effective techniques to visu-

alize filament-surface relationships. Computer Graphics Forum 29:1003 – 1012, DOI 

10.1111/j.1467-8659.2009.01703 

Lawonn K, Viola I, Preim B, Isenberg T (2018) A survey of surface-based illustrative ren-

dering for visualization. Computer Graphics Forum DOI 0.1111/cgf.13322 

Lee KKY, Tang WC, Choi KS (2013) Alternatives to relational database: comparison of 

NoSQL and XML approaches for clinical data storage. Computer methods and pro-

grams in biomedicine 110(1):99–109, DOI 10.1016/j.cmpb.2012.10.018 



15 

Levoy M (1988) Display of surfaces from volume data. IEEE Computer Graphics and Ap-

plications 8(3):29–37, DOI 10.1109/38.511 

Li W, Agrawala M, Curless B, Salesin D (2008) Automated generation of interactive 3D 

exploded view diagrams. ACM Transactions on Graphics 27(3):101:1–101:7, DOI 

10.1145/1360612.1360700 

Lu A, Morris CJ, Ebert DS, Rheingans P, Hansen C (2002) Non-photorealistic volume ren-

dering using stippling techniques. In: Proceedings of IEEE Visualization, pp 211–218, 

DOI 10.1109/VISUAL.2002.1183777 

Magnus JG, Bruckner S (2018) Interactive dynamic volume illumination with refraction 

and caustics. IEEE Transactions on Visualization and Computer Graphics 24(1):984–

993, DOI 10.1109/TVCG.2017.2744438 

Miao H, De Llano E, Isenberg T, Gröller ME, Barišić I, Viola I (2018) DimSUM: Dimen-

sion and scale unifying map for visual abstraction of DNA origami structures. Computer 

Graphics Forum 37(3):403–413, DOI 10.1111/cgf.13429 

Molloy JC (2011) The open knowledge foundation: open data means better science. 

PLoS biology 9(12):e1001195, DOI 10.1371/journal.pbio.1001195 
Netter FH (2017) Atlas of Human Anatomy E-Book. Elsevier Health Sciences 

Oh SW, Harris JA, Ng L, Winslow B, Cain N, Mihalas S, Wang Q, Lau C, Kuan L, Henry 

AM, et al. (2014) A mesoscale connectome of the mouse brain. Nature 508(7495):207, 

DOI 10.1038/nature13186 

Potter K, Rosen P, Johnson CR (2012) From quantification to visualization: A taxonomy of 

uncertainty visualization approaches. In: Uncertainty Quantification in Scientific Com-

puting, Springer, pp 226–249, DOI 10.1007/978-3-642-326776_15 

Preim B, Saalfeld P (2018) A survey of virtual human anatomy education systems. Com-

puters & Graphics 71:132–153, DOI 10.1016/j.cag.2018.01.005 

Qualter J, Sculli F, Oliker A, Napier Z, Lee S, Garcia J, Frenkel S, Harnik V, Triola M 

(2012) The biodigital human: a web-based 3D platform for medical visualization and 

education. Studies in health technology and informatics 173:359–361, DOI 

10.3233/978-1-61499-022-2-359 
Raj M, Mirzargar M, Preston JS, Kirby RM, Whitaker RT (2016) Evaluating shape align-

ment via ensemble visualization. IEEE Computer Graphics and Applications 36(3):60–

71, DOI 10.1109/MCG.2015.70 

Rautek P, Bruckner S, Gröller E (2007) Semantic layers for illustrative volume rendering. 

IEEE Transactions on Visualization and Computer Graphics 13(6):1336– 1343, DOI 

10.1109/TVCG.2007.70591 

Shen EH, Overly CC, Jones AR (2012) The Allen Human Brain Atlas: comprehensive gene 

expression mapping of the human brain. Trends in neurosciences 35(12):711– 714, DOI 

10.1016/j.tins.2012.09.005 

Shneiderman B (1996) The eyes have it: A task by data type taxonomy for information vis-

ualizations. In: Proceedings of the IEEE Symposium on Visual Languages, pp 336–343, 

DOI 10.1109/VL.1996.545307 

Smit N, Kraima A, Jansma D, de Ruiter M, Botha C (2012) A unified representation for the 

model-based visualization of heterogeneous anatomy data. In: EuroVis Short Papers, pp 

85–89, DOI 10.2312/PE/EuroVisShort/EuroVisShort2012/085089 

Smit N, Hofstede CW, Kraima A, Jansma D, deRuiter M, Eisemann E, Vilanova A (2016) 

The Online Anatomical Human: web-based anatomy education. In: Proceedings of the 

37th Annual Conference of the European Association for Computer Graphics: Educa-

tion Papers, Eurographics Association, pp 37–40, DOI 10.2312/eged.20161025 

Smit N, Lawonn K, Kraima A, DeRuiter M, Sokooti H, Bruckner S, Eisemann E, Vilanova 

A (2017) Pelvis: Atlas-based surgical planning for oncological pelvic surgery. IEEE 



16  

Transactions on Visualization and Computer Graphics 23(1):741– 750, DOI 

10.1109/TVCG.2016.2598826 

Svakhine N, Ebert DS, Stredney D (2005) Illustration motifs for effective medical volume 

illustration. IEEE Computer Graphics and Applications 25(3):31–39,DOI 

10.1109/MCG.2005.60 

Swoboda N, Moosburner J, Bruckner S, Yu JY, Dickson BJ, Bühler K (2017) Visualization 

and quantification for interactive analysis of neural connectivity in drosophila. Comput-

er Graphics Forum 36(1):160–171, DOI 10.1111/cgf.12792 

Taerum T, Sousa MC, Samavati F, Chan S, Mitchell JR (2006) Real-time super resolution 

contextual close-up of clinical volumetric data. In: Proceedings of EuroVis, pp 347–354, 

DOI 10.2312/VisSym/EuroVis06/347-354 

Termeer M, Bescós JO, Breeuwer M, Vilanova A, Gerritsen F, Gröller E (2007) 

CoViCAD: Comprehensive visualization of coronary artery disease. IEEE Transactions 

on Visualization and Computer Graphics 13(6):1632–1639, DOI 

10.1109/TVCG.2007.70550 

Thomas JJ, Cook KA (2006) A visual analytics agenda. IEEE Computer Graphics and Ap-

plications 26(1):10–13, DOI 10.1109/MCG.2006.5 

Tominski C, Gladisch S, Kister U, Dachselt R, Schumann H (2017) Interactive lenses for 

visualization: An extended survey. Computer Graphics Forum 36(6):173–200, DOI 

10.1111/cgf.12871 

Trapp M, Schulze F, Bühler K, Liu T, Dickson BJ (2013) 3D object retrieval in an atlas of 

neuronal structures. The Visual Computer 29(12):1363–1373, DOI 10.1007/s00371-

013-0871-8 

Van Der Maaten L, Postma E, Van den Herik J (2009) Dimensionality reduction: a com-

parative review. J Mach Learn Res 10:66–71, DOI 10.1.1.112.5472 

Viola I, Gröller E (2005) Smart visibility in visualization. In: Computational Aesthetics, pp 

209–216, DOI 10.2312/COMPAESTH/COMPAESTH05/209-216 

Viola I, Isenberg T (2018) Pondering the concept of abstraction in (illustrative) visualiza-

tion. IEEE Transactions on Visualization and Computer Graphics 24(9):2573–2588, 

DOI 10.1109/TVCG.2017.2747545 

Viola I, Kanitsar A, Gröller ME (2005) Importance-driven feature enhancement in volume 

visualization. IEEE Transactions on Visualization and Computer Graphics 11(4):408–

418, DOI 10.1109/TVCG.2005.62 

Walter T, Shattuck DW, Baldock R, Bastin ME, Carpenter AE, Duce S, Ellenberg J, Fraser 

A, Hamilton N, Pieper S, et al. (2010) Visualization of image data from cells to organ-

isms. Nature methods 7(3s):S26, DOI 10.1038/nmeth.1431 

Weaver C (2004) Building highly-coordinated visualizations in improvise. In: Proceedings 

of IEEE InfoVis, pp 159–166, DOI 10.1109/INFVIS.2004.12 

Xu R, Wunsch D (2005) Survey of clustering algorithms. IEEE Transactions on neural 

networks 16(3):645–678, DOI 10.1109/TNN.2005.845141 

Yeatman JD, Richie-Halford A, Smith JK, Keshavan A, Rokem A (2018) A browserbased 

tool for visualization and analysis of diffusion MRI data. Nature communications 

9(1):940, DOI 10.1038/s41467-018-03297-7 

 


