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In this paper, we present a parameterization technique that can be applied to surface
meshes in real-time without time-consuming preprocessing steps. The parameteriza-
tion is suitable for the display of (un-)oriented patterns and texture patches, and to
sample a surface in a periodic fashion. The method is inspired by existing work that
solves a global optimization problem to generate a continuous stripe pattern on the sur-
face, from which texture coordinates can be derived. We propose a local optimization
approach that is suitable for parallel execution on the GPU, which drastically reduces
computation time. With this, we achieve on-the-fly texturing of 3D, medium-sized (up
to 70k vertices) surface meshes. The algorithm takes a tangent vector field as input
and aligns the texture coordinates to it. Our technique achieves real-time parameteri-
zation of the surface meshes by employing a parallelizable local search algorithm that
converges to a local minimum in a few iterations. The calculation in real-time allows
for live parameter updates and determination of varying texture coordinates. Further-
more, the method can handle non-manifold meshes. The technique is useful in various
applications, e.g., biomedical visualization and flow visualization. We highlight our
method’s potential by providing usage scenarios for several applications.
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1. Introduction

In surface visualization, there is often a need to visualize ad-
ditional features of the data directly on the surface. If there is
only one value that needs to be shown, color mapping is often
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tribution over the surface. However, for multivariate data, the
need can arise to visualize multiple values simultaneously, and
simple color mapping will no longer suffice. Multiple views
can be presented in such cases, but this requires mental inte-
gration for the viewer. Glyph-based or layering techniques are
also able to convey multiple quantities, but may lead to clutter
and occlusion [3]]. To provide the user with an integrated view
of multiple features, advanced visualization techniques such as
illustrative visualization can be used to encode additional infor-
mation. For such techniques, however, preprocessing is often
required. This has the unfortunate side-effect that those tech-
niques can no longer be employed to display dynamic changes,
and there may be cases where preprocessing is undesirable or
even impossible. Furthermore, when relying on precalculation,
it is not possible to update any parameters involved at run-time.
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Fig. 1: Our surface parameterization method is able to deal with dynamic changes on-the-fly and can be used in a range of real-time applications. From left to
right: (1) selectively discarding fragments achieves a transparency effect, without affecting colors of underlying structures, (2) dynamic flow field visualization, with
two spheres representing vortex cores, and arrow textures around them indicating flow direction, (3) visualization of a stress-tensor on aneurysm surface data [T} 2]
(when zooming in, the frequency of the pattern increases to allow for more detail), (4) parameterization of the Hyperball with a 4-way rotational symmetry field as

input.

Therefore, there is a need for a method that is able to provide
parameterization of a surface mesh without preprocessing and
that can be adjusted on-the-fly.

We propose a technique to parameterize a triangulated sur-
face and generate a global stripe pattern on the surface, based
on an underlying tangent vector field. If no vector input is
available, principal curvature directions could be computed
as a backup strategy. This is also possible in real-time as
stated by Griffin et al. [4]. The resulting parameterization can
then be used for different visualizations tasks. Existing meth-
ods [ already address this kind of problem. However,
these do at most focus on interactivity, while we aim for a real-
time visualization, allowing dynamic input properties. Further,
our problem formulation is suitable for an optimized recon-
struction of the parameterization in the fragment shader. This
is beneficial, e.g., if our method is used to generate local tex-
ture coordinates. To make our method suitable for real-time
applications, we adapt existing approaches and aim for a local
solution through local iterative optimization steps. The local-
ity of our approach allows handling of non-manifold surfaces.
Also, we can update visualizations and their parameters on-the-
fly, for instance driven by dynamic vector fields, or reactive to
scene changes resulting from interaction. With this, our main
contributions are the following:

e We propose a technique to derive local texture coordinates
from tangent vector-fields on a surface mesh, through local
iterative optimizations.

e Our technique can be executed in real-time for medium-
sized meshes, and thus can be used in visualization of both
dynamic meshes, as well as dynamic parameter input.

e We demonstrate the potential of our technique in several
usage scenarios from various domains, and compare the
performance of our technique both quantitatively and qual-
itatively to reference methods.

We obtain periodic 1D texture coordinates based on a 1D pa-
rameterization aligned to an unoriented vector field. This can
be employed for field visualization using a stripe pattern. The
parameterization based on two orthogonal vector fields can be

used to obtain periodic 2D texture coordinates. These can be
used to visualize vector fields or arbitrary scalar properties us-
ing different textures or patterns, as we demonstrate in several
examples.

2. Related Work

In this section, we examine related work from a technical per-
spective, as well as from a visualization application perspective.

Surface Parameterization Techniques. Surface parameteriza-
tion has been intensely researched for a long time [8]. Global
parameterization plays an important role in global quad remesh-
ing algorithms in order to find an optimal remeshing across the
whole mesh. A survey on this topic is provided by Bommes et
al. [9]. Such methods are usually complex to implement, run
at most at interactive timings [10] and thus, are not applicable
in real-time applications. Jakob et al. [7] proposed a method
that relinquishes global optimization, yet is still able to create
meshes that align with features on a global scale. This local ap-
proach makes their method parallelizable, which makes finding
a solution faster by several orders of magnitude. Such tech-
niques define, or get as input, a direction field on the surface,
along which the parameterization is aligned. Proper genera-
tion of such direction fields is crucial to guarantee mesh quality
for these methods. Design of these direction fields has emerged
from the above requirements as an additional research area. De-
tails can be found in the state of the art report by Vaxman et
al. [11]]. Our work uses as input an unoriented vector-field and
does not address its further optimization. The methods men-
tioned so far generate vector fields, or at least require an opti-
mized vector-field as input, and use them in successive steps.
The design and visualization of direction fields is often closely
coupled to allow for a visual feedback of applied changes [12]].
The visualization is often done using line integral convolution
(LIC) [13L[14]. However, LIC does only convey the ambiguous
orientation of a vector direction d ~ —d and cannot be used to
display textures. Other methods, like the generation of texture
coordinates, utilize vector-valued input to control texture ori-
entation. Then, attention has to be paid to whether the vector
field is oriented or non-oriented. Methods that take orientability
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into account can be used for a controlled display of orientable
textures, but have to take care of visual seams [15, [16, [17],
while methods that work on unoriented fields have to rely on
symmetric textures [[18} [19].

The most important prior art to the work presented here
are the position field optimization of the Instant Field Aligned
Meshes (IFAM) algorithm by Jakob et al. [7]] and the technique
for stripe pattern synthesis on surfaces (SPS) by Knoppel et
al. [6]. The IFAM algorithm has introduced a local and paral-
lel solution to global parameterization and the patterns that re-
sult from applying SPS are globally smooth and applicable for
design and texture synthesis tasks. The interpolation scheme
by Kndppel allows for a globally continuous pattern away from
isolated singular points. Global continuity refers to the property
that no jumps in the pattern can be found across the surface (i.e.,
no seams are visible). More precisely, if a piecewise continuous
pattern is given and the pattern is based on a periodic function,
the periodicity results in repetitive piecewise continuity across
the surface, hence achieving global continuity. In contrast to
SPS, our technique finds a locally optimized solution through
local iterative optimization steps, which makes it suitable for
real-time applications without requiring any precalculation.

Related Visualization Applications. One of the potential appli-
cation areas for our technique is to employ the generated stripe-
patterns as an additional visual encoding channel for multivari-
ate data visualization. Multivariate data is defined in the com-
prehensive survey by Fuchs and Hauser as information which
has an attribute vector for each data item [20]]. In the field of
multivariate data visualization, Rocha et al. [21] recently pro-
posed a real-time technique to map decals onto surfaces as a
new way of representing multivariate data. The sets of images
or patterns mapped to the surface are able to represent attributes
of the data at the location they are mapped to, and can be used
in combination with additional layered visualization elements.
In contrast to their approach, we are able to handle dynamic
flow patterns in addition to real-time texture coordinate synthe-
sis, since we generate a globally continuous pattern. The work
by Schroeder and Keefe [22] specifically caters to time-varying
multivariate data visualization by providing an artist with an
interface to sketch such visualizations. In their work, they al-
low artists to sketch illustrative elements that can be used as
animated glyphs in a layered 2D visualization. However, their
technique is focused on visualization design on a flat 2D sur-
face. In earlier work by Kirby et al. [23], the potential of using
illustrative techniques borrowing concepts from painting to vi-
sualize multivalued 2D flows was highlighted. Our technique
is also able to generate illustrative strokes for flow, but extends
to more complex 3D surfaces. Furthermore, we are able to an-
imate these strokes to represent time-varying vector fields. Re-
cent work by Roy et al. [24] use LIC to visualize the sheets
of branched covering spaces. However, LIC is not suitable for
expressing the unambiguous directionality of vector fields, and
thus they require animations to express this aspect.

To the best of our knowledge, ours is the first work to use
a globally smooth parameterization for visualization purposes,
based on dynamic input data that can be updated in real-time.
This concept, w.r.t. to visualization purposes, is inspired by the

work by Knoppel et al. [6], who generate a continuous stripe
pattern on a surface, based on an input vector field. They also
present details on the proper visualization of their parameteri-
zation results and, e.g., how to obtain texture coordinates from
that. Their approach in turn is based on the method to generate
a periodic global parameterization (PGP) as described by Ray
et al. [S)], who focus on re-meshing purposes. The stripe pat-
tern algorithm introduces several changes in order to drastically
improve the performance. Jakob et al. [7] were the first to trans-
late the problem addressed by the above mentioned methods to
a formulation that allows a local and thus parallel execution of
the optimization. However, their CPU implementation is suit-
able for interactive, but not for real-time performance. Further-
more, the frequency of their periodic pattern is limited by the
mesh resolution.

We incorporate ideas and concepts of the above mentioned
work and extend these with the goal to come up with an algo-
rithm that allows for parameterization in real-time and is suit-
able for visualization purposes. We contrast the prior work in
the way that we obtain coordinates for orientable textures, how
these coordinates can be aligned with the underlying field on
a pixel basis and we employ a convergence term for the opti-
mization process. Furthermore, we show a range of application
scenarios that can be seen as an inspirational basis for future
visualizations tasks, based on dynamic field visualization.

3. Method

To obtain a surface parameterization, we aim to determine a
globally smooth stripe pattern on the triangle mesh. The basic
idea of the algorithm is to interpret each vertex on the mesh as
a sample of an individual wave (i.e, a periodic function). This
wave is described by an individual direction, which passes the
vertex at a specific phase with a certain frequency. Hence, the
input to our algorithm is a vector field that defines the wave
directions and a scalar field that defines the wave frequencies.
For a globally optimal solution all vertices can be interpreted as
samples of the same wave as in Fig.[2] The elongation of each
sample on the wave can then be used to generate a periodic
stripe pattern.

Notation. For the remainder of this paper, we use the follow-
ing notation. For a triangulated mesh M, we denote V, E, F as
its vertices, edges, and triangles respectively. If (i, j) € E with
i, j € V then vertex i and j are connected. Similarly, (i, j, k) € F
means that the vertices i, j, k form a triangle. Additionally,
we use N(7) to describe the set of neighbors of vertex i. With
v; € R3, we denote the position of the vertex i in R3. Further-
more, we define ‘W as the wave set, which consists of a set of
wave directions D, phases £, and frequencies 7. Thus, every
vertex i is assigned an individual wave w; with normalized vec-
tor d; € O, which defines the direction of the wave, and a phase
®; € P with frequency f; € ¥. Note that we consider the (nor-
malized) direction vector d; € D at vertex i as an equivalence
class with d; ~ —d;. This means that, although this vector has a
direction, the solution of a global stripe pattern is independent
of this direction and is, therefore, non-oriented.
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Fig. 2: For an optimal stripe pattern, the vertex phases ®; along a surface align
with one continuous wave, e.g., the vertex phases sample a single wave along
the surface.

Fig. 3: In the smooth setting, we can find an intersection C of two waves (top
left), by the trace of d along the surface (top right). If the tangent planes of v;
and v; are not the same, we cannot find an intersection of the wave traces in
3D, because d lies in the respective tangent plane (bottom).

3.1. Basics

The phase shift @, i.e., the signed difference of the phases
from vertex j to i, is computed as follows:

Qj; =2r-dji - fjis (1)

where d; is the aligned distance between v; and v; and the wave
frequency is taken into account by the geometric mean, such
that f;; = fi = +/fif;- The aligned distance is the distance
relative to a common reference point and is used to account for
differences in the wave directions d; and d; (i.e., the divergence
of the vector field).

Basically, we cannot directly compute a phase shift (or dis-
tance) between i and j, because both represent individual 1D
waves along the surface as in Fig. [3|(top, left). If we find an in-
tersection C of the waves (Fig. [3]top, right), we can regard C as
the common source of the waves i and j. Thus, the phase shift
is computed relative to the intersection point C. In the smooth

Fig. 4: Computation of the wave intersection C (left). Rotation of v; about C
for alignment with v;, where C can be thought of the common source of both
waves, indicated by the concentric circle sections (right).

Fig. 5: Interpreting w (left) as a sine-wave has two solutions on the unit circle
(right), depending on the direction of d. The elongation at @ is either increasing
or decreasing. In general, if ®g represents the phase of the wave traveling to
the right, and @/, the one traveling to the left, 7 — g = @, holds.

setting, we would use the geodesic distance to C. If multiple
intersection points along the surface exist, we take the closest
one. Since we want to process a discrete mesh, a different at-
tempt is made: As shown in Fig. |3| (bottom), the direction d lies
in the respective tangent plane. Consequently, if the tangent
planes are not equal, the waves will likely not intersect in 3D
space. This is why we create a plane that contains the points
vi, vyand p = 0.5(v; +d; + v; + d;) (Fig. El left). Then, df’
and d‘;’ , which represent the projections of the respective direc-
tions into that plane, are used to compute C. As @ j; represents
a signed difference, we have to take the direction of the waves
into account:

djj = (C=vj|=|C=vi)-(C —v;,d)), ()

where (., .) denotes the Euclidean dot product. Then, d; is virtu-
ally the distance between v; and vf (see Fig. E right). Eq.can-
not handle the non-orientable property of the direction d € D
that is depicted in Fig.|5| If d” and d? are counter-oriented with
respect to their common source C (i.e., one pointing towards
and one pointing away from C), we have to take care of the am-
biguity of d;;. A simple adjustment to the calculation to solve
this problem is described in Section[3.2] Eq[7]

If the phases are consistent on the mesh, then the equation
®; = ®j; + ®; would hold for every edge (i, j) € E. In general,
this cannot be guaranteed, thus we aim to find the phase set
that minimizes the following energy:

8(?) = Z Wjilq)ji + (Dj - (Di|2, (3)
(i,))eE

where w; is a weight which can be chosen arbitrarily for each
edge. We used wj; = [(d;, d;)|.

Knoppel et al. [6] formulated the same minimization problem
(regarding the energy formulation) and described how they can
achieve a globally optimal solution. In this paper, we present
a local algorithm, tailored to the GPU. Furthermore, we do not
compute the energy based on the phase-shift directly. As previ-
ously done by Marcias et al. [25], it is based on the difference
of the phases after transforming the phases into 2D Cartesian
coordinates on the unit circle:
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1 2
81‘ = Z Wj,'“E(QOji - Qoi)” 5 (4)
JEN()

where ¢; = (cos(®;), sin(®;)) and ¢ ;; = (cos(D; + D), sin(P; +
®;;)). This energy is equivalent to the one in [6], utilizing a
single variable for each vertex and each edge. Our global energy
is defined as:

Ev=) & (5)

i€V

The rationale for using Cartesian coordinates is the handling of
mismatching phases, similar to an outlier treatment, and will
be described in more detail in Sec. 3.2l The relation between
radial and Euclidean distances is depicted in Fig. [6] (left). With
our approach, we achieve similar results to the ones presented
by Knoppel et al. [[6] by finding a local solution ®; such that &;
is minimal. We will later show (in Section [3.6) that only small
changes to the implementation are necessary, such that we can
process unit cross-fields.

3.2. Local Optimization

Our optimization strategy iteratively adjusts ®; to minimize
the global energy &y. First, we initialize ®; with a pseudo-
random value, assigning a value obtained by using the vertex
ID as input for the One-at-a-Time hash, that can be found in the
online version of [26]. The minimization is done in parallel for
each vertex 7 and iteration k in two main steps:

1. For every (oriented) edge (j,7) € E, a target phase ‘I”(‘ is
i)
computed. (Sec.[3.2.1)

2. @1 is determined such that 85! < &%. (Sec.[3.2.2)

In step 2 we explicitly do not ask for every vertex that 8! < &k
holds, but we ensure that &' < &, holds. This is inspired
by Simulated Annealing (SA), which randomly allows locally
negative updates during optimization [27]. More details about
the convergence are given in Sec. [3.3]

3.2.1. Target Phase (Step 1)
The goal in this step is to determine CDf.‘“ for vertex i. As a
preliminary value, we set

WG = O+ @, (6)
as we would expect ®; = @ ;;+®; for a perfect stripe pattern. At
this point, we have to take the wave directions d into considera-
tion. If the waves of the vertex i and j are counter-oriented with
respect to their common source (Fig. ), errors occur due to the
directionality of the wave function. In particular, ‘i”(‘j’i) does not
correctly reflect the target phase that is necessary to match two
such waves. In this case we have to adjust ‘i‘fj,i) (see Fig. Eright

and Fig. B):

'\

Cartesian
= 4]
e oo

o 0.5 1 25 g

R;.i?ians 2 '

Fig. 6: Comparison of Euclidean and radial distances of two points on the unit
circle (left). E{-‘ is the average target phase based on the Cartesian coordinates on
the unit circle (9",/(',1' = (COS(\P{(/'J))’ sin(‘I’](‘jJ.)))). ‘We can observe that the Cartesian
mean phase (green dots) differs from the radial mean phase (mean phase along
the arc, orange dot) (right).

n— Pk

ko Gy
Wi = {@k
Gy

(d;,d;) - (C-v;,C-v;)<0
. (N
otherwise

With this adjustment ‘I’f.i) matches the waves of vertex i and
Jj across the edge (j, i) by their elongation rather than by their
phase, and thus takes counter-oriented directions into account.

3.2.2. Phase Alignment (Step 2)
In step two, we compute the mean target phase Ef-‘ of vertex
i in Cartesian coordinates, which is based on the target phases

‘P’(‘j’i) along the (oriented) edges (j,7) € E:

F= > wigh, with gk, = (cos(¥;,), sin(¥f;,) ®
JEN(D)

with wj;; = [(d;,d;)|. Since in our local approach each vertex
should fit as best as it can to its neighborhood with respect to
the wave direction, we favor parallel wave directions and prune
orthogonal or diverging directions. We average the Cartesian
coordinates of the target phases on the unit circle, because this
reduces the influence of phases that are far away from the aver-
age. This has two reasons:
1. Normalization of the 2D coordinate Eé‘ within the unit
circle does not affect the result of atan2(<,_of) (Fig. @ right). Thus,
if a phase 1,0];’5 has drawn t,_off towards the center of the unit circle,

that effect is partly compensated by the normalization of g_of-‘.
Consequently, such disagreeing phases have less impact on the
result, which is an important property of this representation,
as it helps connected vertices to share a common phase more
quickly.

2. When considering the distance of two points on the unit
circle, the relation between the Euclidean and the radial dis-
tance is not linear (see Fig.[6] left). In the Euclidean representa-
tion distances greater than V2 are distinctly compressed, com-
pared the radial counterpart. This reduces the contribution of
phases far from Ef, (i.e., outliers get pruned). We compared the
presented averaging method with averaging the phases directly
in radial space and found that the Cartesian averaging resulted a
more uniform pattern, with less bifurcations and lower residue
energy &y.
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To estimate (Di.‘“, we compute t,_of in Cartesian space. We
obtain the following offset to the current phase:

NG = — ¢ ©)
with ¥ = (cos(®%), sin(®)). Finally, we obtain ®**! by:

O = atan2(gf + mk + AG), (10)

k+

where mf is a momentum. mz; I'is updated for each iteration as

ml = 5, Ag) (11)

with s,, = 0.2 being the momentum strength. For the first it-
eration, we set m? = (0,0). The momentum can help to keep
vertex phases flexible, to avoid a premature local convergence.

3.3. Convergence

To achieve convergence, we ensure that for every iteration
8’{,” < 8"‘( hol(.ls. We compute the vertex energy 8"‘, (Eq. ,
after each iteration £, to keep track of the optimization progress.
Then, the relative energy improvement

k _ ok+l
&y - &y

AE =
&y

12)
is computed for every step. Note that, if a vertex reduces its
local energy, the global energy is also decreased, because |® ;| =
|D;| (see Eq. m) The above assumption holds, as we ensure that
updates of neighboring vertices do not interfere, by applying a
graph-coloring to the mesh. Details on the graph-coloring are
given in Sec.|4| Convergence is detected when ASI“, drops below
a threshold €;. The convergence term allows the algorithm to
stop as soon as a certain optimization quality is reached, but
also requires to keep track of the convergence progress. This is
also useful during the hierarchical optimization that is described
in the next section.

3.4. Hierarchical Optimization

Our algorithm can optionally employ the hierarchical struc-
ture presented in [[7]. In this section we recap the purpose of this
hierarchy for completeness. In the local approach, the phase
of a vertex is only optimized with respect to its direct neigh-
bors. In order to find a solution that is globally satisfactory,
the information of a vertex has to propagate across the mesh,
which is problematic for high resolution meshes. This propaga-
tion of information can be speeded up by running the optimiza-
tion in multiple resolutions of the mesh. A coarse resolution
will quickly converge, while a fine resolution will take small
features of the mesh into account. Thus, we optionally utilize
the multi resolution hierarchy depicted in [[7], to obtain a set of
meshes that approximately halves the number of vertices with
each coarser hierarchy level. We can start our optimization in a
coarse level and propagate the results to the next finer level until
the original mesh is reached. We switch levels as soon as the
current level has converged as described in the previous section.
However, it has to be mentioned that the input wave directions
and frequencies in the finest level are consecutively smoothed
(area weighted average of merged vertices) in coarser levels. If

the smoothed properties differ greatly from the original input,
the results of coarse hierarchy levels will not properly represent
the final result. Hence, the hierarchy is less feasible if the input
properties are not smooth.

3.5. Texture Coordinates

If we want to render a periodic texture or pattern with the
values given in ‘W, we have to compute a per-pixel phase ®p
in the fragment shader. Each fragment’s phase is determined by
the vertex phases ®;, ®;, Oy, where (i, j, k) € F are the vertices
of the triangle generating the fragment. We cannot simply in-
terpolate the vertex phases linearly, due to the periodicity of the
wave function [6]. This is important if the actual phase shift be-
tween two vertices along a wave is larger than 2x. In these cases
we have to incorporate the frequency f. Next, we describe our
interpolation method, which takes f into account.

Per-Fragment Phase. To compute the fragment’s phase Op,
we need information about the wave direction dp at the three-
dimensional coordinate of fragment P.

dp = S+ by - iy, (13)

meli, j.k}

where b,, is the barycentric weight of each vertex to the frag-
ment and s,, takes care of the direction of d,,. If the wave of
a vertex m in a triangle is counter-oriented relative to the other
two, we set s,, = —1, otherwise we set s, = 1.

Fig. 7: Wave pattern on a sphere. The close-up shows how our interpolation
method is capable of aligning each individual fragment with the wave pattern.
The direction of the pattern visibly changes even inside individual triangles,
reflecting the vector field divergence.

This is required to avoid null vectors and to consider the
equivalence d; ~ —d;. The adjustment through s,, is crucial
for the proper display of textures (see Fig. [5). Note that this
can only be applied to triangles that can be oriented in a gen-
eral direction. If this is not the case, we only make sure that the
pattern is continuous across the triangle edges. This is achieved
by using a barycentric subdivision of the triangle as described
in [6].

With the 3D-coordinate of the fragment and dp we can ob-
tain a fragment phase ¢”, similar to Eq. (8 In this case wj; is
replaced by the barycentric weight, the vertex i is replaced by
the fragment, and the neighboring vertices j are replaced by the
three vertices, that generate the fragment. Finally, we compute
the fragment phase:
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®p = atan2(@"). (14)

The computation of individual fragment phases yields a pixel
perfect alignment of the wave pattern, as shown in Fig.|7| and
the bending arrow texture in Fig. [1| (center, left). This is an ad-
vantage over a linear interpolation as Fig. [17| (left) shows. The
IFAM source code uses linear interpolation to reconstruct the
fragment parameters. This leads to visible linear segments in
curved regions of the parameterization and limits the pattern
frequency by the mesh resolution. The interpolation method
used in [6] can handle the pattern frequency independent of the
mesh resolution, but still generates linear segments inside trian-
gles. Note that our fragment interpolation is only feasible be-
cause it is equivalent to the interpolation of vertices during the
optimization process. Differing interpolation approaches would
lead to distortion of the pattern.

2D Coordinates. Computing two wave patterns U, V, based on
orthogonal vector fields allows to display 2D textures. For this,
we map O, d} € [—r, 7] to a range of [0, 1] and use this value
for texture access. Note that we need to take d into account
again. Even if the peaks and troughs of counter-oriented waves
match after our optimization, d still affects the texture access.
Through the application of s, in Eq. two neighboring trian-
gles can be counter-oriented with respect to their texture access.
This happens if vertices on an edge (i, j) are counter-oriented,
and for one triangle i is flipped, while for the other triangle
j is flipped. Then, the texture coordinates along the edge are
flipped as well. To obtain matching texture coordinates at sites
of counter-oriented waves, we simply add /2 to each fragment
phase and then compute the texture coordinates. This matching
only applies to textures that are symmetric along both axes (i.e.
with a 180° symmetry). As in Fig.[5} the direction in which we
sample a texture depends on the wave direction. This does not
account for textures that are symmetric along both axes.

3.6. Cross-Fields

As described in the previous paragraph, we can use two or-
thogonal vector fields to generate 2D coordinates for, e.g., tex-
ture access. Here, we shortly describe how the implementation
can be optionally changed to handle two orthonormal vector
fields as a cross-field with rotational symmetry. In our problem
formulation the wave direction d was treated as an equivalence
class d ~ —d, hence two orthonormal vector fields resemble a
unit cross-field in the notation by Vaxman et al. [L1]. We can
extend the implementation to manage unit cross-fields by opti-
mizing 2 linked stripe patterns (see Fig. [I] right). In this case,
each vertex v; references 2 directions d;,, with corresponding
phases ®@; ., r € {0, 1}. The directions d;, are given by rotations
of an input direction d; about the normal of v; by r/2n. During
optimization, the individual waves are not isolated. Instead, the
mean target phase @;, for a given ®@;, (Eq. [8) is computed af-
ter removing the ambiguity (i.e., the rotational symmetry) of the
cross-field: For each neighbor j € N(i) we obtain '¥'(;; based on
®;,, andd;,,. Here, m € {0, 1} is chosen such that {d; ,,d ;)| is
maximized. This has the effect, that ;. is computed by taking

the neighboring waves into account, that minimize the orienta-
tional difference to the direction d; .. Note that this modification
is optional. For the display of textures, two separate orthogo-
nal vector fields are better suited, because they allow textures
of 180° symmetry. A cross-field for example (that represents a
90° symmetry) is suitable for textures of 90° symmetry.

4. Implementation

We have defined our optimization method as a highly paral-
lelizable problem. In this section, we describe our implementa-
tion of the algorithm on the GPU.

Generally, we would like to compute as many vertices as pos-
sible in parallel. Care has to be taken in terms of memory con-
sistency, because the update for each vertex per iteration de-
pends on the state of the neighboring vertices. By applying a
graph coloring C to the mesh, we can find disjoint subsets ¢ € C
of the mesh, such that there is no edge between any nodes in c,
i.e., neighbored vertices do not share the same color. We can
then iterate over the subsets ¢ € C and update all nodes belong-
ing to ¢ in parallel. In this case we do not need to take care of
race conditions or memory consistency. The pipeline consists
of four main steps:

1. Initialization
2. Graph Computation
3. Phase Evaluation

4. Pattern Extraction

Step 1. We initialize the optimization by setting vertex phases
to an initial pseudo-random value and calculate per vertex prop-
erties, if necessary. Per vertex properties might for instance
consist of individual frequencies, or modifications to the under-
lying vector field. For example, the frequency might change
based on the distance of a vertex to a dynamic reference point
or the vector field might change with respect to time resolved
vector field data. This step is performed in a vertex-shader. We
do not apply further modifications to the data in order to achieve
a most appropriate visualization of the input.

Step 2. According to Jakob et al. [[7] and with the neighborhood
information obtained from the mesh topology, we compute a
graph-coloring such that two neighboring vertices never share
the same color. For this we implemented the Jones-Plassman-
Luby algorithm described in the work by Naumov et al. [28]]. To
enable a vertex to access information to its neighbors, we store
the vertex IDs of all neighbors per vertex. All data is stored in
Shader Storage Buffer Objects (SSBO), so that arbitrary reads
are possible.

Step 3. We invoke a render pass, consisting of a vertex-shader,
for each color of the graph and only process vertices of that
active color. Like this, an active vertex can read data from its
neighbors and write its updated data, without interfering mem-
ory access with its neighbors. Such a division into disjunctive
sets has also been used in the work by Choong et al. [27] within
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Fig. 8: Branch properties: Area around undefined phase (left), angular devia-
tion of the parameter gradient and the vector field, where a full red location rep-
resents a deviation of 90°(center), and angular deviation larger than 5°(right).

the context of a parallel SA implementation. At first, the mean
target phase g_of is computed as in Eq.|8] Along with t,_of we can
compute the vertex energy 85.‘, based on the state of the previous
iteration. Sf is summed up over all vertices i using an atomic
float counter. Thus, the convergence is checked against the en-
ergy of the last but one iteration and we can immediately obtain
and apply ®*! as in Eq.

Step 4. After the optimization has stopped, a final render-call
determines the per fragment phase ®p as in Eq.[[4]and extracts
a pattern or texture coordinates to either display a stripe pattern
or a texture. The GPU storage size which our SSBOs require,
depends on how many vector fields we want to process simulta-
neously and on the maximum number of neighbors per vertex.

Our current implementation reserves memory for 4 +7V + N
components per vertex for V vector fields, if the maximum
number of vertex neighbors is N. This contains: the world coor-
dinate (3), the number of neighbors (1), the neighbor IDs (N),
the direction d (4V), the phase ® (1V), the frequency f (1V)
and the energy & (1V). In this very straight-forward implemen-
tation, the color-graph allows us to neglect any memory barri-
ers, other than separate render calls. A positive side-effect is
that colors that are processed later, can already use the updated
information of neighboring vertices. This effectively speeds up
the propagation of information across the mesh.

Further, while a graph subset ¢ € C is processed, we can be
sure that the neighbors of the nodes in ¢ do not change. Thus,
a positive update of the vertices in ¢ cannot be undone by par-
allel execution of their neighbors. However, the graph-coloring
reduces the grade of parallelism, but if the GPU is still working
at capacity, even if only vertices of single colors are computed,
we expect the overhead to be at a minimum. Another optimiza-
tion we can utilize depends on the quality of the graph-coloring.
We utilize a naive parallel graph coloring approach and found
that the last third of assigned colors covers only about 1.5% of
the graph. With that in mind, we process the vertices of the
last third of colors only every second iteration, to save compu-
tation time. We found that the influence on the result’s quality
is negligible in that case.

Branches. During the optimization, our algorithm automati-
cally inserts branches to the stripe pattern. Such locations are
also known as singularities of a positional symmetry field as
in [7]. For completeness, we provide a short recap of this topic.
A branch adds or removes a stripe segment to ensure an isomet-
ric spacing of the stripes, adapting to the surface morphology
or to vector field divergence. These branches occur at locations
where our interpolation (Eq. [8) results in an undefined phase

(i.e., in the center of the unit circle in Fig. [6] (right)) for a given
triangle of the input mesh. Such a location is marked in red in
Fig. [8] (left). We can find triangles that contain such a singular-
ity by using the properties w; of each of the triangle’s vertices,
and estimating the presence of such an undefined phase. Gen-
erally speaking, the less branches a parameterization contains,
the higher its quality. The minimum number of branches de-
pends on the mesh morphology and pattern frequency. It can be
observed that the input vector field cannot be correctly depicted
by the stripe pattern in branch regions. In the optimal case, the
gradient of the parameterization (i.e., V®) is parallel to the vec-
tor field. The angular deviation of the gradient and the vector
field are shown in Fig. [§] (center and right). Regions where the
parameterization does not properly agree with the underlying
vector field are limited to branch regions. Away from branch
regions, the stripe pattern is well suited to represent the vector
field in a precise manner.

Dynamic Input. The implementation can easily handle dy-
namic input (e.g. changing frequency, vector field direction or
vertex position). If one of these properties changes from frame
n to frame n + 1, the output £ at n can be used as input for
n + 1. Very few iterations of our optimization are necessary, to
adjust @ with respect to the dynamic input change. The num-
ber of iterations required to achieve a visually smooth update
depends on the ratio of the frame rate and the rate at which the
dynamic property changes. Rapid property changes require a
higher number of update iterations. We found that updating
with 1-3 iterations per frame yields good visual results, while
a higher number adjusted % too fast, resulting in jittery move-
ments of the visualized pattern.

5. Results

In this section, we present several usage scenarios in which
we applied our technique to surface meshes from both real and
artificially generated datasets. Additionally, we provide a qual-
itative and quantitative performance comparison to the work of
Knoppel et al. [6] and Jakob et al. [[7].

5.1. Usage scenarios

Our technique can be employed in a range of scenarios in
which information needs to be visualized on surface meshes
on-the-fly, that is based on scalar or tangent vector input. It can
also be utilized in the course of multi-variate data visualization
to some extent, because the patterns generated by our method
can be employed as an information channel in addition to color
or glyphs, for instance. Here, we present several concrete us-
age scenarios for our technique based on biomedical and vector
field visualization.

Surface Sampling. Our method can be employed for structured
surface sampling. After the optimization process, we can find
locations on the surface with ® = n - 27, n € {0, 1}, which can
be thought of as the peak of a cosine wave. If two orthogonal
stripe patterns are given, the intersection of their wave represen-
tations’ peak locations sample the surface in a regular pattern.
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Fig. 9: Magenta dots mark detected sample points (left). Anisotropic (center, left) and importance (center) sampling combined with arrow decals (using decal
maps [21]]) placed by our sampling technique visualize a vector field. The sample density is increased in the highlighted area. Electrostatics of a molecule (right):
Comparison of a color map and user defined texture patches that represent positive (orange, +), negative (green, -) and neutral (gray, -) charges.

The search of these samples can be implemented in the geom-
etry shader, since for each triangle, the peak locations can be
estimated based on their vertices’ phases @, directions d and
frequencies f. In Fig.[9)(left) the green and orange stripes show
locations around wave peaks of orthogonal vector fields. The
intersections of these peaks sample the surface in a regular pat-
tern, with respect to the wave directions and frequencies. An
anisotropic sampling has been achieved by simply using differ-
ent frequencies for two orthogonal stripe patterns (Fig.[9} cen-
ter, left). Similar to the Poisson-sampling proposed by Corsini
et al. [29]], we can introduce an importance sampling, by in-
creasing the frequency in more important regions (Fig.[9] cen-
ter). More sampling-based visualizations are shown in Fig.
For the bunny on the left, we generate tangent vector field-
aligned quads, based on the sampling. These quads are then
rendered with an artistic hatching texture, allowing us to draw
across the original mesh boundary. In Fig. (right) a vec-
tor field is visualized using arrow glyphs. An additional scalar
field is used to modulate the pattern frequency, which can be
employed to draw the glyphs in varying size. In this context,
we think of applications in tensor field visualization, where the
glyph size and spacing is controlled by the eigenvalues of the
tensor. The adaptive sampling is then able to resemble a sort of

glyph packing [30].

Lllustrative Biomedical Visualization. Our technique can be
employed for illustrative biomedical visualization applications.
As shown in the work by Ritter et al. [31]], illustrative vascu-
lar visualization methods can be used to enhance spatial per-
ception for complex vascular structures. By using texture to

Fig. 10: Artistic hatching achieved by rendering surface aligned quads with a
stroke texture (left). Visualization of a vector and scalar field (right, the scalar
field is depicted in the inset).

A o

Fig. 11: Liver vasculature is visualized using our technique, with a tumor dis-
played in brown and a surgical instrument indicated in green. The hatching
frequency dynamically updates to encode the distance of the vessel to the nee-
dle, when the needle tip is further away (left), or closer to a vessel (right).

LRt

encode shape and topology, the color channel is left free to en-
code additional information. Lawonn et al. [32] followed up on
the work by Ritter et al. by developing a visualization technique
for 3D vascular models in the liver, in which they used hatching
styles to encode distances [31]]. While their approach required
preprocessing in the form of streamline calculation based on
curvature, our current technique can be employed for similar
purposes without any offline calculation. Curvature informa-
tion, for instance, can be computed in real-time as well [4].
Since our technique is able to dynamically adjust the hatch-
ing frequency and stroke width, we can adjust our visualiza-
tion on-the-fly to take novel information into account, such as
changes to the scene resulting from interaction. In a surgical
guidance context, hatching stroke frequency for instance could
be based on the current distance to the camera [31]] or one of the
surgical instruments employed during an operation, as can be
seen in Fig. [T} The surfaces in this figure were reconstructed
from a clinical CT dataset. By varying the hatching frequency
based on instrument proximity, as the instrument gets closer
to the vessel, the stripe size adjusts proportionally, such that
the line width is approximately 1/10 of the distance to the nee-
dle. The hatching style and color are then still free to encode
other information, for instance to use pseudo-chroma-depth to
enhance depth perception. Furthermore, an interactive focus-
and-context visualization can be generated using dynamic cut-
aways via a binary transparency. This effect is similar to the
screendoor focus in [33], though our pattern follows the mesh
surface, preserving geometrical features. This can be used to
provide a view on nested structures, for instance the vascula-
ture and tumor, which reside inside the liver, without altering
the color perception of the structures within (see Fig. [T} left).
Several techniques address the generation of hatching



10 Preprint Submitted for review / Computers & Graphics (2018)

strokes, based on dynamic properties, such as focus-and-
context driven line generation [34] or apparent ridges [33].
Our technique is able to generate strokes of adjustable width
and spacing and allows dynamic stroke directions without pre-
computation. An example, along with a comparison to existing
techniques by Lawonn [36] and high quality hatching by Zan-
der [37] is given in Fig. The example shows that the param-
eterization can be used to draw locally varying hatching strokes,
or to render a dashed silhouette, to obscure less important parts
of a mesh.

When introducing color to the stripe pattern, we can display
vector and scalar fields in a combined view, as done in Fig.
(center, right). Here, we show the first eigenvector of a stress-
tensor on the vessel surface of an aneurysm. The first eigenvec-
tor is represented by the stripe pattern. The first two eigen-
values are shown in green and orange. Purple and magenta
highlight areas, where the respective eigenvalue exceeds a user-
defined threshold. The space between the strokes depends on
another user-defined threshold and provides information about
the global relation of the tensor magnitudes. IL.e., thin and thick
strokes represent low and high eigenvalues, respectively. The
pattern frequency can be dynamically adjusted, e.g., based on
the target object’s distance to the camera. As the user zooms
in, the frequency increases. Our algorithm’s ability to dynami-
cally update the pattern yields a smooth transition while zoom-
ing. A similar visualization of surface stress, that requires pre-
computation, can be found in Meuschke et al. [38]]. However,
single stream-lines that are employed to depict the tensor data
in their work, may overlap and therefore impair the perception.
The idea of visualizing tensor fields with orientable patterns is

\D/’)_ \/) i
s VA
Fig. 12: Illustrative visualization of vascular structures of the liver: Locally
varying hatching strokes (center), cross hatching (left, bottom) and dashed sil-
houette (left, top). Comparative visualizations using the ConFis method by
Lawonn [36] (right, top) and high quality hatching by Zander [37]] (right, bot-
tom).
also implemented in the work by Auer et al. [39].
Visualizations of biological information can also benefit from
illustrative visualization techniques [40, 41]. For example,
molecular visualization often aims to abstract context informa-
tion, or has to deal with occlusion [42]], or time-varying simula-
tion data. In Fig. 9] (right) we visualize electrostatic properties
of a molecule. While the color map is a common way to do so,
we can use our periodic texture coordinates for a space-filling
mapping of texture patches to the surface. This way, the color
channel is left free for representation of other properties. In
general, there are many cases in which biomedical multivari-
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Fig. 13: Timings for two orthogonal parameterizations of our approach com-
pared to SPS, applied to the Horse mesh at different resolutions. The lower
bound of the filled line displays the timings for one optimization iteration in
[6] Alg. 6. The upper bound represents the total time their algorithm takes for
both, building up their matrix representation ([6] Alg. 4) and computing one
optimization iteration. Numbers are given for our optimization for €5 = 0.05
and €5 = 0.02 in log scale. The visual results are shown in Fig.E}

ate or dynamic data needs to be visualized on meshes where
preprocessing is not possible and/or not desirable.

Vector Field Visualization. Besides handling cases in which we
visualize dynamically changing scene information at run-time,
such as updates based on instrument location, we are also able
to handle dynamically changing vector fields on the surface it-
self. This is useful for instance in flow visualization, specifi-
cally when visualizing unsteady flow, i.e., flow which is chang-
ing over time. In the flow visualization survey by McLoughlin
et al. [43], it was stated that unsteady flow is more challeng-
ing to visualize, and animation is a natural way of representing
this time-dependent flow. In Fig. [I] (center, left), we provide an
example of visualizing an artificially generated time-dependent
vector field on a surface. The vortex cores, represented by the
orange and blue spheres in the figure, move over time and influ-
ence the vector field on the surface. Close to the vortex cores,
we visualize the vector field with an animated arrow texture,
while further away we animate the field with a less salient tex-
ture to emphasize the flow around the vortices. The flow can be
animated, by shifting the texture access based on a periodic time
parameter. The speed of the flow is then represented by the pat-
tern frequency. For example, texture patches in regions of high
frequency move slower, because they cover a smaller region in
3D space during a constant time period. Due to the globally
continuous pattern that is generated every timestep, we are able
to update changes to the flow on-the-fly. We further visual-
ize a synthetic vector field on the bunny model in Fig. [9] (cen-
ter, left), utilizing the Decal-Maps method by Rocha et al. [21]].
The decal positions are defined by our sampling method. The
more regular distribution of our samples might be an advantage
when sample positions are used for flow visualization. With our
method, the sampling itself is able to resemble the flow direc-
tion, because the samples are found along wave peaks. It has
to be noted that our technique - since it is an optimization - can
only represent an approximation of the underlying vector field.
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Fig. 14: Timings of our approach for different models with 30k vertices and
60k faces each. The number of iterations correlates strongly with the runtime,
indicating that GPU work-load is distributed similarly across different meshes.
The number of colors in our color-graph does not correlate with the timings.
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Fig. 15: Comparison of our method and SPS (Reference, after one iteration).
Note that the timings were measured while computing two orthogonal patterns,
but we show only one pattern to avoid visual clutter.

5.2. Performance

To assess the performance of our algorithm, we generated
2D-stripe patterns for several meshes of various sizes, ranging
from 2.5k to 110k vertices per mesh. The performance tests
were executed on a desktop computer environment with a 4.00
GHz 17-6400 processor, a GTX-1070 GPU and 16GB RAM.
Since the problem that we solve is very similar to that targeted
by SPS [6] and IFAM [[7]], we provide a quantitative comparison
of our technique with their methods. To make the comparison
with Knoppel et al. [6], we compiled the original code provided
by the authors, together with the SuiteSparse and CHOLMOD
packages from the Ubuntu package-manager. Both algorithms
get a vector field as input, that we obtain by projecting the same
global vector into the tangent plane of each vertex. Depending
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Fig. 16: Timings of our algorithm (with ¢ = 0.02) compared to the position
field optimization by Jakob et al. using a cross-field on the horse mesh at
different mesh resolutions.

Fig. 17: Visualization of similar parameterization results of the same sphere
model (left). The horse mesh (225k faces) parameterized with a cross-field by
our method and the method by Jakob et al. [[7] (right). Note that the cross-fields
are not the same, since these are based on a random seeding.

on the optimization parameter € (see Sec.[3), we can optimize
for speed, with lower quality pattern generation results, or op-
timize for quality, at the cost of computation speed. The stripe
pattern algorithm can be tuned in a similar way. Their com-
putation relies on an energy-matrix build-up, and an iterative
optimization of this matrix ([6]], Alg.4 and Alg.6). The number
of optimization iterations in their publicly available implemen-
tation is 20. We found that the results after 4 iterations was
visually difficult to distinguish from the results after 20 itera-
tions. Nevertheless, we chose to conduct our comparison with
their results after only one optimization iteration, to obtain the
lowest possible timings and to account for probable real-time
ability. For the comparison with the IFAM algorithm, we use
the code that was published by Jakob et al. [7]. Here, both al-
gorithms find a solution based on a cross-field input using 10
hierarchy levels.

Quantitative Perspective. The plot in Fig. [I3] shows that our
method computes stripe patterns faster than the globally opti-
mal stripe pattern, for sufficiently large meshes. Very small
meshes do not benefit enough from the parallelism of our ap-
proach. The presented timings were achieved without using the
hierarchy levels mentioned in Sec. @ We did this, because
the hierarchy is not generally feasible. In cases where we up-
date the parameterization frame-by-frame and use the result of
the previous frame as input, we cannot take advantage of the
hierarchy. Re-using results in coarser hierarchy levels for con-
secutive frames would not yield a frame-coherent visualization
at the finest level, since the propagation to the coarser levels
would smooth the input. We compare the timings our algo-
rithm takes to converge, with the total time of the stripe pat-
tern method, which includes building up an energy-matrix rep-
resentation and optimizing that energy over one iteration. We
do so, because their energy-matrix is computed based on the
mesh morphology and the target frequency or orientation per
vertex. Thus, for morphology changing meshes, or dynamic
input, the timings displayed in Fig. [[3]represent the minimum
timings per frame. Even if the energy-matrix build-up would
not be completely recomputed for each frame, our algorithm
still completes faster, than one optimization iteration of the ref-
erence algorithm. Convergence of our algorithm depends on
the threshold €. To account for this, we show timings for two
configurations.
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For dynamic input, our approach is superior to the stripe pat-
tern algorithm. When updating an existing parameterization
with dynamic input, 1-3 iterations of our algorithm are suffi-
cient and thus only a fraction of the timings given in Figures [[3]
and [T4] are required. The plot in Fig. [[6] compares our method
with the parallel CPU optimization by Jakob et al. [7]. It shows
that our GPU approach scales better with the number of vertices
and is able to complete the parameterization significantly faster.
From Fig. [I4] we can observe that our algorithm’s performance
is drastically mesh-dependent.

Qualitative Perspective. If computation speed is less crucial,
€ can be decreased. As processing time increases, the qual-
ity of the output pattern increases as well. However, we can
observe in Fig. [15] (center, left) that the quality is nonetheless
limited for high resolution meshes. In comparison we show the
same model (Fig.[I3] center, right), after the optimization using
10 hierarchy levels. The processing time has slightly increased,
but the visual outcome is close to the optimal reference (Fig.
right). Also, in this example, the number of branches for the
hierarchical optimization has been reduced by about 33% com-
pared to the non-hierarchical one. Similar quality is achieved
for a lower resolution of the mesh, without using the hierarchy
(Fig.[T5] left). A visual comparison of to the method by Jakob
et al. [[7] can be found in Fig.

Robustness. Our method is robust against noise and incomplete
meshes (see Fig. and can as well be applied to non-manifold
meshes. As long as D, ¥ and the neighborhood N are defined,
the algorithm is independent of any topological restrictions. It
would even run on point clouds, but we leave this for future
work.

Limitations. The most significant limitation of the proposed
algorithm is that it does not scale well with mesh resolution.
We can address this problem with the hierarchical optimiza-
tion, which allows us to parameterize large meshes at the cost
of building up the hierarchy. However, the hierarchy is only ap-
plicable if the input parameters on the original mesh are already
smooth. Furthermore, if we apply a frame-by-frame update of
the parameterization to adapt to dynamic input, we also have to
renounce the hierarchy. In such a case it might still be feasi-
ble to use the hierarchy for an initial parameterization, which
can then be modified in consecutive frames. Processing dy-
namic input only on the level of the original mesh is crucial to
maintain a frame-coherent appearance of the result. Regard-
ing the results of our quantitative evaluation, we can state that
the proposed algorithm is capable of processing meshes of up
70k vertices with approximately 30 fps. Beyond that, interac-
tive rates are still possible but the parameterization quality is
significantly impaired if not using the hierarchy (see Fig. [I3).
However, the stated mesh size is appropriate for the proposed
visualization tasks and especially for applications in the medi-
cal domain. Further, it might be desirable that the stripe pattern
aligns with sharp features of the mesh. This is currently not
supported but could be addressed by incorporating the extrinsic
energy formulation in [7].

We assume that our implementation, which mainly resides
in the vertex-shader, is straightforward on the GPU and suffi-
ciently proves the real-time capability of our method. With the
presented structure, there is no need for further synchronization
of memory access. Contrarily, the CPU is likely to be a bot-
tleneck here, since the GPU and CPU have to communicate for
each render-call. During the optimization iterations, the number
of calls amounts to the number of iterations times the number
of colors in the color-graph. An implementation using CUDA,
OpenCL, or compute shaders, which offer more flexibility and
manually defined memory barriers, might improve the compu-
tation times for our algorithm.

6. Conclusion and Future Work

We present a technique for the parameterization of surfaces
that can be applied to surface meshes in real-time without time-
consuming preprocessing steps. Our method generates a stripe
pattern on arbitrary morphology on-the-fly. The work incorpo-
rates several ideas of existing work [3,16}[7]. We adopt the rep-
resentation of the periodicity in our parameterization through
waves (i.e., the sine and cosine of the parameter space as in
PGP), since their formulation is most intuitive in our opinion.
The PGP algorithm parameterizes triangles and reconstructs
per-vertex parameters from them. Hence, each vertex is initially
processed n times, with n being the valence of the vertex. In
our method, vertices are parameterized directly, with respect to
their neighbors, making it more suitable for parallel execution.
This adopts the energy from SPS [6]], defining one parameter for
each vertex and each edge in a mesh (instead of parameters per
vertex per triangle as in PGP). Knoppel et al. have introduced a
sub-triangle interpolation scheme, to allow a pattern frequency
higher than the mesh resolution. We use an extended interpola-
tion method that is able to resemble the changes of the param-
eterization (especially with respect to vector field divergence,
see Fig. [/)) within a triangle on a fragment basis. The interpo-
lation method takes the vector field directions into account to
compute the distance between two points on the surface. This
approach is incorporated into our optimization process, to make
the parameterization compatible with the interpolation method.
A by-product of this action is, that we can obtain periodic pat-
terns on the surface, that have an arbitrarily higher resolution
than the mesh. This stands in contrast to [FAM, where the pat-
tern resolution has to be lower than the mesh resolution. We
further use a convergence term for our optimization process,
whereas IFAM uses a fixed number of optimization iterations.

The performance evaluation and comparison to the reference
method by Knoppel et al. [[6] and Jakob et al. [7], reveal that aes-
thetically pleasing and accurate results can be generated under
real-time conditions. We bring the topic of periodic parameter-
ization to the context of data visualization, as shown by mul-
tiple examples that address different tasks. Besides animated
textures on static surfaces, our technique is also capable of han-
dling morphological changes in the surface mesh, and can be
used for animated meshes. The computation for the Ramses
model shown in Fig. containing 826k vertices, took 400 ms
using 10 hierarchy levels. Hierarchies which support dynamic
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Fig. 18: Our method can process incomplete (left) and non-manifold (center, left) meshes. The low quality tumor segmentation with unconnected parts (center,

right) can also be handled, as well a noisy meshes (right).

Fig. 19: The Ramses model with 826k vertices, parameterized in 400 ms.

changes of the input have been proposed by Schertler [44].
Thus, future work should address the utility of the hierarchy
for dynamic input in the context presented here, as to overcome
the current limitations of this work.

Further, we would like to analyze the behavior of our ap-
proach on tessellation changing meshes, which could be applied
to tasks that use several levels-of-detail.

However, with respect to the current results, we consider our
method a powerful approach that provides convincing visual re-
sults. It has the potential to provide an important basis for future
visualization applications.
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